
Homework 1
T1

1. Convert these decimal numbers to 8-bit 2's complement numbers:

-114

+81

2. Convert the following 8-bit 2's complement numbers to decimal.

0011 0010

1111 1101

T2
1. What's the smallest and largest number that can be represented by an 8-bit 2's complement

number? (Answer in decimal)

2. Try to determine the range that an N-bit 2's complement number can represent. (Answer in
decimal)

T3
Is there a negative integer that has identical 2's complement representation and original code in
binary (8-bit)? If so, what is it? (Answer in decimal)

T4
The C code below takes two integers and prints out whether the first number is less than the second
one. (The numbers given are guaranteed to be in the range of int .)

1. Under what circumstances will the program print a < b while actually ?

2. What if we change the code to the following? (Also, the numbers given are guaranteed to be in
the range of unsigned int .)

#include <stdio.h>

int main(void) {

 int a, b;

 scanf("%d %d", &a, &b);

 if (a - b < 0) {

 printf("a < b\n");

 } else {

 printf("a >= b\n");

 }

 return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

af://n104
af://n106
af://n122
af://n128
af://n130

T5
Write the decimal equivalents for the IEEE floating point number below.

0 10001011 00000000001000000001000

T6
What is the smallest number that can be represented in IEEE floating point format with 32 bits
regardless of infinity? What about the smallest positive number? (Answer in binary)

We define a number is smaller as it is on the lefter side of the number axis.

T7
Can you list all the integers whose IEEE floating point representations are exactly the same as their 2's
complement integer representations? (Answer in decimal)

Hint: You can write a program to find the answer. Type float in C language follows the rule of
32bits IEEE floating point format.

T8
The code below uses three XOR operation to swap two integers.

1. Fill in the blanks to complete the code.

2. Is there anything wrong to use the swap function in the sorting function below? If so, how can

you fix it?

#include <stdio.h>

int main(void) {

 unsigned int a, b;

 scanf("%d %d", &a, &b);

 if (-a > -b) {

 printf("a < b\n");

 } else {

 printf("a >= b\n");

 }

 return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

void swap(int *a, int *b) {

 __ = __ ^ __;

 __ = __ ^ __;

 __ = __ ^ __;

}

1

2

3

4

5

af://n139
af://n142
af://n146
af://n150

Figure 1.10, P20

T9
We've got 2 blackboxes, each of which takes two numbers as input and produces a number as the
output. The first one is capable of adding, while the second one is capable of multiplying. (As shown in
Figure 1.10, (a) and (b)) We can combine these blackboxes to calculate . (As shown in
Figure 1.10, (c))

You're required to draw circuits that can calculate the following expressions:

1.

2.

void sort(int *a, int n) {

 // sort a[0] ~ a[n - 1]

 for (int i = 0; i < n - 1; i++) {

 int min = i;

 for (int j = i; j < n; j++) {

 if (a[j] < a[min]) {

 min = j;

 }

 }

 swap(a + i, a + min);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

af://n159

3. The length of the longest edge of a right triangle (noted as), given the lengths of the other two
edges (noted as).

Value Weight

4. The weighted average of:

You can draw the circuits on a physical paper, on a tablet app, or, preferably, on flowchart
makers like https://app.diagrams.net/ .

T10
We'd like to use binary to represent the following characters:

A to Z

a to z

0 to 9

2 special characters: (space) and .

1. How many bits do we need to represent a single character?

2. How many bits do we need to represent a string of characters?

3. Assume that we use 0 to represent A , 1 to represent B , and so on. So we use 63 to represent . .
What is the binary representation of Hello World. ?

https://app.diagrams.net/
af://n185

	Homework 1
	T1
	T2
	T3
	T4
	T5
	T6
	T7
	T8
	T9
	T10

