
Homework 4

T1

Recall the machine busy example from Example 2.11 in Section 2.6.7. Assuming the BUSYNESS
bit vector is stored in R2, we can use the LC-3 instruction 0101 011 010 1 00001 (AND R3, R2,
#1) to determine whether machine 0 is busy or not. If the result of this instruction is 0, then
machine 0 is busy.

1. Write an LC-3 instruction that determines whether machine 2 is busy.
2. Write an LC-3 instruction that determines whether both machines 2 and 3 are busy.
3. Write an LC-3 instruction that determines whether all of the machines are busy.
4. Can you write an LC-3 instruction that determines whether machine 6 is busy? Is there a

problem here?

T2

Suppose the following LC-3 program is loaded into memory starting at location x30FF.

Address Value

x30FF 1110 0010 0000 0001

x3100 0110 0100 0100 0010

x3101 1111 0000 0010 0101

x3102 0001 0100 0100 0001

x3103 0001 0100 1000 0010

If the program is executed, what is the value in R2 at the end of execution?

T3

The LC-3 ISA contains the instruction LDR DR, BaseR, offset . After the instruction is decoded,
the following operations (called microinstructions) are carried out to complete the processing of
the LDR instruction:

MAR <- BaseR + SEXT(offset6) ; set up the memory address
MDR <- Memory[MAR] ; read mem at BaseR + offset
DR <- MDR ; load DR

Suppose that the architect of the LC-3 wanted to include an instruction MOVE DR, SR that would
copy the memory location with address given by SR and store it into the memory location
whose address is in DR .

1. The MOVE instruction is not really necessary since it can be accomplished with a sequence
of existing LC-3 instructions. What sequence of existing LC-3 instructions implements (also
called "emulates") MOVE R0,R1 ? (You may assume that no other registers store important
values.)

2. If the MOVE instruction were added to the LC-3 ISA, what sequence of microinstructions,
following the decode operation, would emulate MOVE DR,SR ?

T4

The LC-3 does not have an opcode for XOR, so we're required to write instructions to implement
the XOR operation by ourselves. Assume that the reserved opcode 1101 is implemented as OR
instruction, which shares the same format as AND instruction.

The following instructions will store the value of (R1 XOR R2) to R3 (XOR R3, R1, R2). Fill in the
two missing instructions to complete the program. You are only allowed to use the registers R1,
R2, R3, and R4.

Address Instruction

x3000 1001 100 001 111111

x3001

x3002 1001 011 010 111111

x3003

x3004 1101 011 011 000 100

T5

List five addressing modes in LC3. Given instructions ADD, NOT, LEA,LDR and JMP, categorize
them into operate instructions, data movement instructions, or control instructions. For each
instruction mentioned above, list addressing modes that can be used.

T6

1. Write a single LC3 assembly instruction that copies the content of R5 to R4 .
2. Write a single LC3 assembly instruction that clears the content of R3 . (i.e. R3 = 0)
3. Write 3 LC3 assembly instructions that does R1=R6-R7 .

You are ONLY allowed to change the value of R1 .
You may assume that the initial value of R1 is 0.

4. Write 3 LC3 assembly instructions that multiply the value at label DATA by 2. (Mem[DATA] =
Mem[DATA] * 2)

You are ONLY allowed to change the value of R1 .
You don't need to restore or clear the value of the register you used.
No need to consider overflow.

5. Set condition codes based on the value of R1 using only one LC-3 instruction.
You are not allowed to change any value in the registers.

T7

If the current PC points to the address of an JMP instruction, how many memory accesses are
required for the LC-3 to process that instruction? What about ADD and LDI instructions?

T8

The content in PC is x3010. The content of the following memory unit is as follows:

Address Value

x304E x70A4

x304F x70A3

x3050 x70A2

x70A2 x70A4

x70A3 x70A3

x70A4 x70A2

1. After the execution of the following code, What is the value stored in R6 ?

Address Value

x3010 1110 0110 0011 1110

x3011 0110 1000 1100 0001

x3012 0110 1111 0000 0001

x3013 0110 1101 1111 1111

2. Can you use one LEA instruction to do the same task as the three instructions above do?
(Only consider loading value into R6 .)

T9

After the execution of the following code, the value stored in R0 is 12. Please speculate what
the value stored in R5 is like.

Address Value

x3000 0101 0000 0010 0000

x3001 0101 1111 1110 0000

x3002 0001 1100 0010 0001

x3003 0001 1101 1000 0110

x3004 0101 1001 0100 0110

x3005 0000 0100 0000 0001

x3006 0001 0000 0010 0011

x3007 0001 1111 1110 0010

x3008 0001 0011 1111 0010

x3009 0000 1001 1111 1001

x300A 0101 1111 1110 0000

T10

R0 and R1 contain 16-bit bit vectors. The program below determines if rotating R1 left by
bits produces the same bit vector that is in R0 . If yes, the program stores the value in

n

n

M[x3020]. If not, the program stores to M[x3020].

Rotating left a bit vector by one bit consists of left shifting the bit vector one bit, and then
loading into bit[0] the bit that was shifted out of bit[15].

For example, rotating left 1111000011110000 by 3 bits produces 1000011110000111.

Your job: Complete the program below by supplying the missing instructions so it stores in
location M[x3020] if rotating left R1 by bits produces the bit vector in R0 , and store if it
is not possible to produce the bit vector of R0 by rotating left R1 . You are required to only use
four registers: R0 , R1 , R2 , and R3 .

Hint: The highest bit determines whether a 2's complement is positive or negative.

−1

n

n −1

Address Value

x3000 1001 000 000 111111

x3001 0001 000 000 1 00001

x3002 0101 010 010 1 00000

x3003 0001 011 000 0 00 001

x3004

x3005 0001 010 010 1 00001

x3006

x3007 0000 010 000000111

x3008 0101 001 001 1 11111

x3009 0000 100 000000010

x300A 0001 001 001 0 00 001

x300B 0000 111 111110111

x300C

x300D

x300E 0000 111 111110100

x300F 0101 010 010 1 00000

x3010 0001 010 010 1 11111

x3011

x3012 1111 0000 0010 0101

