
Homework 5

T1

What is the purpose of the .END pseudo-op? How does it differ from the HALT

instruction?

T2

What are the definitions of a queue?

T3

The following program has an error in it. What is the error? How would you fix

it?

 .ORIG x3000

A .FILL xDEAD

B .FILL xBEEF

 LD R0, A

 ST R0, B

 HALT

 .END

T4

Suppose you write two separate assembly language modules that you expect to

be combined by the linker. Each module uses the label AGAIN , and neither

module contains the pseudo-op .EXTERNAL AGAIN . Is there a problem using the

label AGAIN in both modules? Why or why not?

T5

Your friend has just written a simple program intended to calculate

complements, which is as follows:

 .ORIG x3000

 ; Simple program that should calculate

 ; complement of DATA and store the result back

 LD R2, DATA

 NOT R2, R2

 ADD R2, R2, #1

 ST R2, DATA

DATA .FILL xF001

 .END

However, it does not seem to be reliable for some reason...

Questions:

1. What's the 2's complement of xF001 in hex?

2. Will the program store the complement to DATA ?

3. What will happen afterwards? Why?

Open questions (Answer if you like, but it WILL NOT be graded):

What's the root cause of this phenomenon? How can we prevent this

from happening?

T6

What's the difference between pseudo-ops .FILL , .BLKW and .STRINGZ in

LC3?

T7

It is often useful to find the midpoint between two values. For this problem,

assume A and B are both even numbers, and A is less than B. For

example, if A = 2 and B = 8, the midpoint is 5. The following program finds the

midpoint of two even numbers A and B by continually incrementing the smaller

number and decrementing the larger number. You can assume that A and B

have been loaded with values before this program starts execution.

Your job: Insert the missing instructions.

 .ORIG x3000

 LD R0, A

 LD R1, B

X ________________ (a)

 ________________ (b)

 ADD R2, R2, R1

 ________________ (c)

 ADD R1, R1, #-1

 ________________ (d)

 BRnzp X

DONE ST R1,C

 TRAP x25

A .BLKW 1

B .BLKW 1

C .BLKW 1

 .END

T8

We all know that we can achieve left-shift by adding the number to itself. For

example, ADD R0, R0, R0 will left-shift R0 by 1 bit. However, right-shift is

not that easy. Complete the following LC3 program so that it will right-shift R0

by 1 bit. Note that some comments have been deleted.

 .ORIG x3000

 ; Suppose R0 is already loaded with the target number

 ; Initialize

 AND R1, R1, #0 ; Result

 ADD R2, R1, #15 ; Loop var i

 ADD R3, R1, #__ (a) ; 1 << (**DELETED**)

 ADD R4, R1, #1 ; 1 << (15 - i)

 AND R5, R5, #0 ; Temp result

 ; Main Loop

L AND R5, R3, R0 ; Test bit

 BR___ (b) N ; **DELETED**

 ADD R1, R1, R4 ; Add to result

N ADD R3, __, __ (c) ; **DELETED**

 ADD R4, R4, R4 ; L-shift R4

 ADD __, __, __ (d) ; **DELETED**

 BRp L

 ; End

 HALT

 .END

T9

The following operations are performed on a stack:

PUSH A

PUSH B

POP

PUSH C

POP

PUSH D

PUSH E

PUSH F

POP

PUSH G

POP

POP

POP

PUSH H

1. What dose the stack contain after the PUSH H ?

2. At which point does the stack contain the most element?

Without removing the element left in the stack from the previous operations, we

change this stack to a queue (the front of queue is the top of stack), and perform

ENQUEUE I

DEQUEUE

ENQUEUE J

ENQUEUE K

DEQUEUE

ENQUEUE L

DEQUEUE

DEQUEUE

DEQUEUE

DEQUEUE

ENQUEUE M

DEQUEUE

3. What does the stack contain now?

T10

Write a function that implements another stack function, PEEK . PEEK returns

the value of the top element of the stack without removing the element from the

stack. The return value is stored in R0 , so you don't need to save R0 . PEEK

should also do underflow error checking: if an underflow occurs, you should

output the string "Stack underflow error" and halt. (Suppose the pointer of top

of the stack is in R6 , and the stack can only take up the memory space from

x3FFF to x3FF0)

