Homework 5

T1

What is the purpose of the .END pseudo-op? How does it differ from the HALT

instruction?

T2

What are the definitions of a queue?

T3

The following program has an error in it. What is the error? How would you fix
it?

.ORIG x3000

.FILL xDEAD
B .FILL xBEEF

LD RO, A

ST RO, B

HALT

.END

T4

Suppose you write two separate assembly language modules that you expect to
be combined by the linker. Each module uses the label AGAIN, and neither

module contains the pseudo-op .EXTERNAL AGAIN . Is there a problem using the
label AGAIN in both modules? Why or why not?



TH5

Your friend has just written a simple program intended to calculate

complements, which is as follows:

.ORIG x3000
; Simple program that should calculate
; complement of DATA and store the result back
LD R2, DATA
NOT R2, RZ
ADD R2, R2, #1
ST R2, DATA
DATA .FILL xF@@1
.END

However, it does not seem to be reliable for some reason...
Questions:

1. What's the 2's complement of xF@@1 in hex?
2. Will the program store the complement to DATA ?
3. What will happen afterwards? Why?

Open questions (Answer if you like, but it WILL NOT be graded):
What's the root cause of this phenomenon? How can we prevent this

from happening?

T6

What's the difference between pseudo-ops .FILL, .BLKW and .STRINGZ in
LC3?

T7

It is often useful to find the midpoint between two values. For this problem,
assume A and B are both even numbers, and A is less than B. For
example, if A = 2 and B = 8, the midpoint is 5. The following program finds the
midpoint of two even numbers A and B by continually incrementing the smaller

number and decrementing the larger number. You can assume that A and B

have been loaded with values before this program starts execution.



Your job: Insert the missing instructions.

.ORIG x3000

LD RO, A

LD R1, B
X (a)
(b

ADD R2, R2, R1
€9)

ADD R1, R1, #-1
(d

BRnzp X
DONE ST R1,C
TRAP x25
.BLKW 1
.BLKW 1
.BLKW 1
.END

T8

We all know that we can achieve left-shift by adding the number to itself. For
example, ADD R@, R@, RO will left-shift R@ by 1 bit. However, right-shift is

not that easy. Complete the following LC3 program so that it will right-shift RO

by 1 bit. Note that some comments have been deleted.



.ORIG x3000
; Suppose RO is already loaded with the target number

; Initialize
AND R1, R1, #0 ; Result
ADD R2, R1, #15 ; Loop var i
ADD R3, R1, #__ (a) ; 1 << (**DELETED**)
ADD R4, R1, #1 ; 1 << (15 - 1)
AND R5, R5, #0 ; Temp result
; Main Loop
L  AND R5, R3, RO ; Test bit
BR___ (b) N ; **DELETED**
ADD R1, R1, R4 ; Add to result
N ADD R3, __, __ (c) ; **DELETED**
ADD R4, R4, R4 ; L-shift R4
ADD __, __, __ (d) ; **DELETED**
BRp L
; End
HALT
.END

T9

The following operations are performed on a stack:

>

PUSH
PUSH B
POP
PUSH C
POP
PUSH D
PUSH E
PUSH F
POP
PUSH G
POP
POP
POP
PUSH H



1. What dose the stack contain after the PUSH H ?

2. At which point does the stack contain the most element?

Without removing the element left in the stack from the previous operations, we
change this stack to a queue (the front of queue is the top of stack), and perform

ENQUEUE I
DEQUEUE
ENQUEUE J
ENQUEUE K
DEQUEUE
ENQUEUE L
DEQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE M
DEQUEUE

3. What does the stack contain now?

T10

Write a function that implements another stack function, PEEK. PEEK returns
the value of the top element of the stack without removing the element from the
stack. The return value is stored in R@ , so you don't need to save R@ . PEEK
should also do underflow error checking: if an underflow occurs, you should
output the string "Stack underflow error" and halt. (Suppose the pointer of top
of the stack is in R6, and the stack can only take up the memory space from
x3FFF to x3FFQ )



