

Guide to Using LC3Tools

by

Chirag Sakhuja
(based on Kathy Buchheit’s guide)
The University of Texas at Austin

 2

The LC-3 is a piece of hardware, so you might be wondering why we need a simulator. The
reason is that the LC-3 doesn’t actually exist (though it might one day). Right now it’s just a plan
– an ISA and a microarchitecture which would implement that ISA. The simulator lets us watch
what would happen in the registers and memory of a “real” LC-3 during the execution of a
program.

How this guide is arranged

The first section gives you a quick introduction to the interface.

The second chapter walks you through entering your first program, in machine language, into
the text editor. You’ll also find information about writing assembly language programs, but
you’ll probably skip that part until you’ve learned the LC-3 assembly language later in the
semester. The third section shows you how to watch the effects of the program you just wrote
in the simulator.

The fourth section takes you through a couple of examples of debugging in the simulator.

In other words,

 Page
Chapter 1 What you see on the screen 3
Chapter 2 Creating a program for the simulator
Chapter 3 Running a program in the simulator
Chapter 4 Debugging programs in the simulator

 3

Chapter 1: What you see on the screen

This chapter just provides a brief reference to the different parts of LC3Tools. As you continue
through the chapters, the usage of each of the buttons and panels will become clearer.

When you launch LC3Tools, you see this.

 4

The main panel in the center of the screen is the text editor. This is where you type out binary
or assembly programs. The name of the file being edited is at the top.

Below the text editor is the console, which shows messages about the Assembly or Conversion
process. When you first open LC3Tools, nothing will be displayed.

The panel to the left contains the following buttons from top to bottom:
1. Create a new file
2. Save a file
3. Open an existing file
4. Assemble an .asm file or convert a .bin file into an .obj file

 5

The toolbar at the top allows you to change the theme and privilege mode. The privilege mode
is only relevant to the simulator section, and it will be addressed in chapter 4.

Finally, the top right of the screen allows you to switch between the editor and the simulator
tabs.

 6

Clicking on the simulator button pulls up the following display, which has quite a bit more going
on. Let’s break it down.

 7

The panel on the top half of the left side shows the register values in hex and decimal. This
panel also shows the Processor Status Register (PSR) and Condition Codes (CC), the Program
Counter (PC), and the Machine Control Register (MCR).

The panel below the registers is the console. The console is used for I/O operations. Click the
console box to begin sending in keyboard input. When selected, the console will have a glowing
blue border around it. Program output will be displayed whether the console is in focus or not.
The button in the top right will clear all the program output.

 8

The right half of the screen is the memory panel. Each entry shows the following information
from left to right: a stop sign indicating whether or not a breakpoint is set at that location
(currently there is a breakpoint set at x0201), the location of the PC (currently at location
x0200), the memory address, the hex and decimal values at the memory location, and the
string from the binary or assembly file source code corresponding to the memory location.

The bottom of the memory panel allows you to navigate memory. The leftmost entry lets you
jump to a specific spot in memory. The PC button will show the memory starting at the current
PC. The arrow buttons allow you to scroll through memory. The large buttons jump by an entire
snippet of memory at a time, and the small buttons jump by 5 locations at a time.

 9

Finally, the toolbar on the left contains the following buttons from top to bottom:
1. Open an .obj file
2. Begin simulating
3. Reload object files
4. Step over an instruction
5. Step in an instruction
6. Step out of an instruction
7. Reinitialize the machine
8. Randomize the machine

More details on the specifics of these buttons can be found in chapter 4.

 10

Chapter 2: Creating a program for the simulator

The Problem Statement

Our goal is to take the ten numbers which are stored in memory locations x3100 through
x3109, and add them together, leaving the result in register 1.

Entering your program in machine language

You have the option to type your program into LC3Tools in either binary or the LC-3 assembly
language. Here’s what our little program looks like in binary:

0011000000000000
0101001001100000
0101100100100000
0001100100101010
1110010011111100
0110011010000000
0001010010100001
0001001001000011
0001100100111111
0000001111111011
1111000000100101

 11

When you type this into LC3Tools, you’ll probably be looking at a chart which tells you the
format of each instruction, such as the one inside the back cover of the textbook. It may be
easier for you to read your own code if you leave spaces between the different sections of each
instruction. Also, you may put a semicolon followed by a comment after any line of code, which
will make it simpler for you to remember what you were trying to do. In that case your binary
would look like this:

0011 0000 0000 0000 ; start the program at location x3000
0101 001 001 1 00000 ; clear R1, to be used for returning the sum
0101 100 100 1 00000 ; clear R4, to be used as a counter
0001 100 100 1 01010 ; load R4 with #10, the number of times to add
1110 010 011111100 ; load the starting address of the data
0110 011 010 000000 ; load the next number to be added
0001 010 010 1 00001 ; increment the pointer
0001 001 001 0 00 011 ; add the next number to the running sum
0001 100 100 111111 ; decrement the counter
0000 001 111111011 ; do it again if the counter is not yet zero
1111 0000 00100101 ; halt

Either way is fine with LC3Tools. It ignores spaces anyway. The second way will just be easier
for you to read.

Saving your program

Click on the Save button in the toolbar on the left. You probably want to make a new
folder to save into, because you’ll be creating more files in the same place when you turn your
program into an object file. Call your program addnums.bin.

Creating the .obj file for your program

Before the simulator can run your program, you need to convert the program to a language
that the LC-3 simulator can understand. The simulator doesn’t understand the ASCII
representations of binary that you just typed into LC3Tools. It only understands true binary, so
you need to convert your program to actual binary, and save it in a file called addnums.obj.

When you press the Convert button in the toolbar on the left, the addnums.bin file will
try to be converted into a real binary file, addnums.obj. The console at the bottom of the
window will report whether the conversion was a success or if there were any errors.

If you don’t know the LC-3 assembly language yet, now you’re ready to skip ahead to Chapter 3,
and learn about the simulator. Once you do learn the assembly language, a little bit later in the

 12

semester, you can finish Chapter 1 and learn about the details of entering your program in a
much more readable way.

Entering your program in the LC-3 assembly language

So you’re partway through the semester, and you’ve been introduced to assembly language.
Now entering your program is going to be quite a bit easier. This is what the program to add ten
numbers could look like, making use of pseudo-ops, labels, and comments.

 .ORIG x3000 ; start the program at location x3000
 AND R1, R1, x0 ; clear R1, to be used for returning the sum
 AND R4, R4, x0 ; clear R4, to be used as a counter
 ADD R4, R4, #10 ; load R4 with #10, the number of times to add
 LEA R2, x0FC ; load the starting address of the data
LOOP LDR R3, R2, x0 ; load the next number to be added
 ADD R2, R2, #1 ; increment the pointer
 ADD R1, R1, R3 ; add the next number to the running sum
 ADD R4, R4, #-1 ; decrement the counter
 BRp LOOP ; do it again if the counter is not yet zero
 HALT ; halt
 .END

Save this file as addnums.asm using the Save button in the left panel. You still need to
change your program to a real binary file, addnums.obj, which is now called “assembling” your

program. To do this, press the Assemble button in the left panel.

 13

Chapter 3: Running a program in the simulator

Now you’re ready to run your program from the previous chapter in the simulator. Click on the

simulator tab and then press the Open button. Browse to and select addnums.obj.
Assuming you originally wrote the assembly version of the program, this is what you will see in
the memory panel.

Notice that the first line of your program, no matter what format you originally used, is gone.
That line specified where the program should be loaded in memory: x3000. As you can see if
you scroll up a line or so, the locations before x3000 are still all 0s.

 14

Since nothing has happened yet (you haven’t started running or stepping through your
program), the temporary registers (R0 through R7) still contain all 0s, and the PC is pointing to
the first line of your program (as is the blue arrow). Bit 15 of the PSR is 1, which means the
machine is in user mode. Bit 15 of the MCR is set, which means the machine is powered on.

Loading the data (ten numbers) into memory

There are multiple ways to get the data into locations x3100 to x3109, and we show two of
them below.

Method 1: Manually entering values

To add numbers to locations x3100 to x3109, type x3100 into the ‘Jump to Location’ text box
and press enter. The memory panel will jump to location x3100.

Click on either the hex value or the decimal value and a text box will pop up. You may enter a
hex value or decimal value, respectively, to set the memory location.

 15

Continue doing so until locations x3100 through x310A have been set as such:

Method 2: Adding the data directly to the assembly file

Switch back to the editor tab and add the following lines after the .END in addnums.asm.

.ORIG x3100 ; start the data at location x3100
.FILL #1 ; the value of the first data element
.FILL #2
.FILL #3
.FILL #4
.FILL #5
.FILL #6
.FILL #7
.FILL #8
.FILL #9
.END

Assemble the program again using the Assemble button. Switch back over to the

simulator tab and press the Reload Object Files button.

 16

Running your program

Type x3000 into the ‘Jump to Location’ text box and press enter. Click the gray arrow to the left
of location x3000 to set the PC to that location (it may already be set correctly there). Click the
gray stop sign to the left of location x3009 to set a breakpoint at this location. Breakpoints will
be discussed in further detail in Chapter 4, but basically simulation will pause as soon as the PC
encounters a breakpoint. By setting a breakpoint at the HALT instruction, the simulator will
pause before entering the HALT trap service routine. This is important because the HALT trap
service routine changes R1, which means if it executes we’ll never actually see the sum in R1!

The memory panel should look like this:

Press the Run button. Simulation will pause as soon as the PC encounters location
x3009.

If you’ve already added up the ten numbers you put into the data section of your program, you
know that 55 is the answer to expect. That’s what you should see in R1 when the program stops
at the breakpoint (in hex, the result is x0037).

Stepping through your program

Now that you’ve seen your program run, you know it works. But that doesn’t give you a good
sense for what’s actually going on in the LC-3 during the execution of each instruction. It’s much
more interesting to step through the program line by line, and see what happens. You’ll need to
do this quite a bit to debug less perfect code, so let’s try it.

 17

First, you need to reset the very important PC to the first location of your program. Set the PC
back to x3000 by clicking the gray arrow to the left of location x3000. Alternatively, you can
change the value of the PC by clicking either the hex or decimal value in the register panel. Now
you’re ready to step through your program.

Click the Step Over button. A couple of interesting things just happened:

1. R1 got cleared (you won’t notice a difference if it was already set to 0).
2. The blue arrow representing the PC moved to location x3001.

Click the Step Over button again. Now R4 got cleared (you won’t notice a difference if it
was already set to 0) and the PC moved to location x3002.

Click the Step Over button again. Now R4 got set to 10 and the PC moved to location
x3003.

Continue to step through your program, watching the results of each instruction, and making
sure they are what you expect them to be.

At any point, if you “get the idea” and want your program to finish executing in a hurry, click on

the Run button, and that will cause your program to execute until it reaches the
breakpoint you set on the HALT.

Now you know how it feels to write a program perfectly the very first time, and see it run
successfully. Savor this moment, because usually it’s not so easy to attain. But maybe
programming wouldn’t be as fun if you always got it right immediately. Let’s pretend we didn’t.
The next chapter will walk you through debugging some programs in the simulator.

 18

Chapter 4: Debugging programs in the simulator

Now that you’ve experienced the ideal situation of seeing a program work perfectly the first
time, you’re ready for a more realistic challenge – realizing that a program has a problem and
trying to track down that problem and fix it.

The following are a series of steps that are common while debugging any program, but we will
work with a single example so it is easier to follow along.

Example 1: Debugging a program to multiply without a multiply instruction

The Problem Statement

Our goal is to multiply the values in R4 and R5 and store the result in R2.

Entering your program in machine language

Enter the following program into the editor.

0011 0010 0000 0000 ; start the program at x3200
0101 010 010 1 00000 ; clear R2
0001 010 010 0 00 100 ; add R4 to R2, put result in R2
0001 101 101 1 11111 ; subtract 1 from R5, put result in R5
0000 011 111111101 ; branch to location x3201 if zero or positive
1111 0000 00100101 ; halt

As you can tell by studying this program, the contents of R4 and R5 will be “multiplied” by
adding the value in R4 to itself some number of times, specified by the contents of R5. For
instance, if R4 contains the value 7, and R5 contains the value 6, we want to add 0+7 the first
time through, then 7+7 the second time through, then 14+7 the third time through, then ...,
then 35+7 the sixth time through, ending up with the value 42 in R2 when the program finishes.

Click on the Save button and call the file multiply.bin. Press the Convert button in
the toolbar on the left to create multiply.obj.

Loading the program in the simulator

Switch to the simulator tab and click the Open button. Browse to multiply.obj and open
it.

 19

Setting a breakpoint at the halt instruction

Breakpoints are extremely useful in many ways, and we’ll get to a few of those soon. You
should make it a habit to set a breakpoint on your “halt” line, because if you run your program
without that, you’ll end up in the halt subroutine which will change some of your registers
before halting the machine. So first, set a breakpoint on line x3204 by clicking the gray stop sign
to the left of the address.

Running the buggy multiply program

Before you run your program for the first time, you need to put some values in R4 and R5 so
that they’ll be multiplied (or not, in this case!). How should you choose values to test? Common
sense will help you here. 0 and 1 are probably bad choices to start with, since they’ll be rather
boring. It would be good to test those later though. If you choose a large number for R5, you’ll
have to watch the loop repeat that large number of times. Let’s start with two reasonably
small, but different numbers, like 5 and 3.

Click on the decimal value to the right of R4 in the register panel. Type in 5 in the text box that
pops up and press enter. Do the same for R5, except enter in 3.

Ensure that the value of the PC is x3200. This can be confirmed by checking the PC register in
the register panel or by seeing if there is a blue arrow to the left of location x3200 in the
memory panel.

Run your program by pressing the Run button. When the PC hits the breakpoint, R2
should contain the value 15. However, R2 contains 20! Something went wrong.

Stepping through the multiply program

One option for debugging your program is to step through the entire multiply program from
beginning to end. Since you have a loop, let’s approach debugging a different way. First, let’s try
stepping through one iteration of the loop to make sure that each instruction does what you
think it should.

To begin simulating again, you need to reset a couple of things. Click the gray arrow to the left
of location x3200 in the memory panel to set the PC back to the beginning of the program. Click
the decimal value to the right of R5 in the register panel and set the value to 3 again.

Click the Step Over button. The PC changes to x3201 and R2 is set to 0. This is what you
expected the first instruction to do, so you can move on to the next instruction.

 20

Click the Step Over button. Now PC contains x3202 and R2 contains the value 5. Again,
this is what you want, so keep going.

The next time you click the Step Over button, R5 changes from 3 to 2 (I’m not going to
keep mentioning the PC, but you’ll notice it changing after each instruction as well). R5 has a
double purpose in this program. It is one of the numbers to multiply, but it is also your
“counter” – it tells you how many more repetitions of the loop are left to go. Each time through
the loop, R5 gets decremented. That seemed to happen just fine, so keep going.

Clicking the Step Over button once more cause the branch instruction to execute. When
a branch instruction executes, one of two things can happen. Either the branch gets taken, or it
doesn’t get taken. In this case, the branch got taken. Why? Because the branch tested the
condition codes which were set by the add instruction right before it. The result of the add was
2, a positive number, so the P condition code was set to 1. Your branch is taken if the Z
condition code or the P condition code contains a 1. The branch was executed taken, so the PC
now points to x3201, and you’re ready for another iteration of the loop.

Stepping through the program for one repetition of the loop has shown that there’s nothing
wrong with any of the individual instructions in the loop. Maybe the problem lies in the way the
loop is set up instead, so let’s try another approach.

Debugging the loop with a breakpoint

One good technique for discovering whether a loop is being executed too many times is to put
a breakpoint at the branch instruction. That way, you can pause once at the end of each
iteration, and check out the state of various registers (and memory locations, in more
complicated programs).

Set an additional breakpoint at the branch at location x3203 by clicking the gray stop sign to the
left of the address. Now there should be breakpoints at both x3203 and the HALT at x3204.
Simulation will pause if the PC encounters either breakpoint.

Run the program by clicking the Run button. Notice the register values when you hit the
breakpoint. R4 is unchanged, it still contains 5. R5 has changed to 2. The condition code is set to
P. This tells you that the branch will be taken.

Click the Run button again and look at the registers. R4 is unchanged, R5 contains 1, and
R2 contains 10. The condition code is set to P, so the branch will be taken.

 21

Click the Run button again and look at the registers. R4 is unchanged, R5 is now 0, and
R2 contains 15. The condition code is set to Z, so the branch will be taken. At this point the
program should stop, but we’re going to take the branch again and do an extra, unwanted
iteration of the loop. That’s the bug.

By changing the branch instruction to only be taken when the condition code is set to P, the
loop will happen the correct number of times. To prove this to yourself, you can edit the
program in the editor tab by changing the line with the branch to:

0000 001 111111101 ; branch to location x3201 result is positive

saving, converting to .obj format, and reloading the new version into the simulator by pressing

the Reload Object Files button. Alternatively, if you don’t want to change the source
code yet in case you find more bugs later, you can directly change the instruction in the
simulator by clicking on the hex value next to address x3203 in the memory panel. Enter x0201
(it should be x0601 currently) in the text box that pops up and press enter. Remember that the
next time you load multiply.obj, the bug will still be there unless you go back and fix the original
binary version of the program and reconvert it.

It works!

Now set the PC to x3200 once again and change R5 to contain 3. Click the red stop sign at
location x3203 to disable the breakpoint. Click the Run button and you should see the value 15
in R2. Congratulations – you’ve successfully debugged the program!

Example 2: Debugging a program to inputs numbers and add them

This program is in assembly language, so if you haven’t learned the LC-3 assembly language,
you might want to wait until you do before you read this section.

 22

The Problem Statement

The purpose of this program is to request two integers (between 0 and 9) from the user, add
them, and display the result (which must also be between 0 and 9) in the console panel.

Writing and assembling the buggy program

Our buggy version of the program looks like this:

 .ORIG x3000
 TRAP x23 ; trap instruction known as "IN"
 ADD R1, R0, x0 ; move the first integer to R1
 TRAP x23 ; another "IN"
 ADD R2, R0, R1 ; add the two integers
 LEA R0, MESG ; load the address of the message
 TRAP x22 ; trap known as "PUTS"
 ADD R0, R2, x0 ; move the sum to R0, to be output
 TRAP x21 ; display the sum
 HALT
MESG .STRINGZ "The sum is "
 .END

Save this program as addinput.asm and assemble it.

Running the buggy program in the simulator

Switch to the simulator tab and load addinput.obj. Notice that the halt is at line x3008 and that
starting at line x3009 you see one ASCII value per line. At line x3009 you see x54, which is the
ASCII code for ‘T’. At line x300A you see x68, which is the ASCII code for ‘h’. The whole string,
“The sum is “ is represented in the memory locations x3009 to x3014.

Click the gray stop sign to the left of location x3008 (the HALT) in the memory panel to set a
breakpoint. Now click the Run button. The first instruction is a trap routine which prompts you
to input a character into the console panel like this:

 23

The simulator will just “wait” in the trap routine. You’ll need to click the console panel and then
press an integer between 0 and 9. Try 4.

The console will show the 4 and then prompt for the next integer, meaning the simulator is in
the TRAP x34 at location x3002. The value x34, which is the ASCII value representing 4, shows
up in R1. TRAP x23 saves the ASCII value in R0, which is then copied to R1 by the instruction at
x3001. R0 currently contains the value 0 because the program is already in the the “IN” trap
routine invoked by TRAP x23 at location x3002, which must have cleared R0 at some point.

The simulator is still waiting on the second integer, so click the console again and enter 3. This
is what the console looks like after the second integer is entered.

You know that 3 + 4 is not equal to g, so what went wrong?

Debugging the program

The big hint about why this program gives the wrong result is a couple paragraphs above this.
Remember that the “4” that you typed in the console window actually ended up in R1 as the
value x34. Then the “3” you typed in appeared as x33. We added those values and ended up
with x67. Looking in that ASCII chart, the code x67 represents “g.” So your output makes sense,
but it isn’t what you want!

You’re going to need to add a few lines to your program, along with two pieces of data, in order
for it to work correctly. The trick has to do with the ASCII codes for the digits 0 through 9. “0” is
represented by x30. “1” is represented by x31. This pattern continues until “9” is represented
by x39. So how about subtracting x30 from the ASCII value of your integer, to get its numerical
value?

 24

You’re going to need the following pieces of data:

ASCII .FILL x30 ; mask to add to convert to ASCII
NEGASCII .FILL xFFD0 ; negated ASCII mask (x-30)

You’re also going to need to add five instructions: two to load the two masks, one to add the
negative version of the mask to the first number, one to do the same to the second number,
and then one to add the positive version of the mask to the result before outputting it. Your
program should now look like this (the new lines are in bold):

 .ORIG x3000
 LD R6, ASCII
 LD R5, NEGASCII
 TRAP x23 ; trap instruction known as "IN"
 ADD R1, R0, x0 ; move the first integer to R1
 ADD R1, R1, R5 ; convert ASCII number to integer
 TRAP x23 ; another "IN"
 ADD R0, R0, R5 ; convert ASCII number to integer
 ADD R2, R0, R1 ; add the two integers
 ADD R2, R2, R6 ; convert sum to ASCII
 LEA R0, MESG ; load the address of the message
 TRAP x22 ; trap known as "PUTS"
 ADD R0, R2, x0 ; move the sum to R0, to be output
 TRAP x21 ; display the sum
 HALT
ASCII .FILL x30 ; mask to add to convert to ASCII
NEGASCII .FILL xFFD0 ; negated ASCII mask (-x30)
MESG .STRINGZ "The sum is "
 .END

Save your program in the editor and reassemble. Reload the object files in the simulator. You
should see the following in the console.

 25

Other debugging tools

Here’s a description of the debugging features provided by the simulator, some of which we’ve
already seen.

Reload Object Files: reloads all files that have been opened and resets the PC to the
first .ORIG in the file.

Step Over: for non-control instructions (ADD, LD, etc.), execute a single instruction.
For control instructions (BR, JSR, TRAP, etc.), execute the entire routine and then
pause at the next adjacent instruction in memory.

Step In: for non-control instructions (ADD, LD, etc.), execute a single instruction. For
control instructions (BR, JSR, TRAP, etc.), execute the single instruction so the PC is at
the beginning of the routine.

Step Out: execute instructions until an RTI or RET is reached.

Reinitialize machine: reset registers and memory locations to x0000. Reset PSR and
MCR as well. Note that you will need to reload object files after reinitializing the
machine.

Randomize machine: randomize registers and memory locations. Useful for verifying
that programs are initializing registers and memory properly instead of relying on
them being initialized to x0000. Note that you will need to reload object files after

randomizing the machine.

The red stop sign indicates a breakpoint is set at location x300D.
When the PC encounters x300D during execution, simulation will

pause.

Found in the settings panel in the top toolbar. The
PSR is initialized to user mode (bit 15 is a 1), so
typically programs you write will not be able to
access protected memory. However, you may want

to access protected regions, such as memory-mapped I/O and the vector table. Make sure this
option is selected so that you do not run into access violation exceptions.

