
Chapter 9-3
Interrupt-Driven I/O

陈俊仕
cjuns@ustc.edu.cn

2023 Fall

计算机科学与技术学院
School of Computer Science and Technology

计算系统概论A
Introduction to Computing Systems

（ CS1002A.03 ）

Outline

Review1

2 From ENIAC to the Stored Program Computer

Review1

2 Interrupt-Driven I/O

2 From ENIAC to the Stored Program Computer3 Input/Output

2024/1/3 3

What is Interrupt-Driven I/O?

Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2
Program A is executing instruction n+3
Program A is executing instruction n+4

……
……
……

2024/1/3 4

What is Interrupt-Driven I/O?

Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2
Interrupt!!!
Program A is executing instruction n+3
Program A is executing instruction n+4

……
……
……

2024/1/3 5

What is Interrupt-Driven I/O?

Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2
1: Interrupt signal is detected
1: Program A is put into suspended animation
1: PC is loaded with the starting address of Program B
2: Program B starts satisfying I/O device’s needs
2: Program B continues satisfying I/O device’s needs
2: Program B continues satisfying I/O device’s needs
2: Program B finishes satisfying I/O device’s needs
3: Program A is brought back to life
Program A is executing instruction n+3
Program A is executing instruction n+4

……
……
……

2024/1/3 6

When and Why to Use Interrupts

n When timing of external event is uncertain
l Example: incoming packet from network
l TRAP vs. Interrupt, 12.5s vs. 0.00001s @ 100 char read from KB

n When device operation takes a long time
l Example: start a disk transfer,

disk interrupts when transfer is finished
l processor can do something else in the meantime

n When event is rare but critical
l Example: building on fire -- save and shut down!

2024/1/3 7

How to implement an interrupt

n To implement an interrupt mechanism, we need:
l A way for the I/O device to signal the CPU that an interesting

event has occurred.
l A way for the CPU to test whether the interrupt signal is set.

n Generating Signal
l Software sets "interrupt enable(IE)" bit in device register.
l When ready bit is set and IE bit is set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal
to processor

2024/1/3 8

Interrupt-Driven I/O

n Testing for Interrupt Signal
l CPU looks at signal between STORE and FETCH phases
l If not set, continues with next instruction
l If set, transfers control to Interrupt Service Routine(ISR)

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to
ISR

NO

YES

More details in Chapter 10.

2024/1/3 9

Interrupt-Driven I/O

n Timing of I/O controlled by device
l 1. Report: Tells processor when something interesting happens

-Example: when character is entered on keyboard
-Example: when monitor is ready for next character
-Example: when block has been transferred from disk to memory

l 2. Processing: Processor interrupts its normal instruction
processing and executes a Interrupt Service Routine(ISR) (like a
TRAP)
- 1. Figure out what device is causing the interrupt
- 2. Execute routine to deal with event
- 3. Resume execution

n No need for processor to poll device
l Can perform other useful work

Interrupt is an unscripted subroutine call,
triggered by an external event

2024/1/3 10

How is Interrupt Signaled?

n External interrupt signal by Devices: INT
l Device sets INT=1 when it wants to cause an interrupt

n Interrupt vector: INTV
l 8-bit signal for device to identify itself
l Also used as entry into Interrupt Vector Table, which gives

starting address of Interrupt Service Routine (ISR)
-Just like Trap Vector Table and Trap Service

Routine
-TVT: x0000 to x00FF
-IVT: x0100 to x01FF

Interrupt Signal to CPU

n Several things must be true for an I/O device to
actually interrupt the processor (ALL the three
elements are present)
l The I/O device must want service(ready bit = 1)
l The device must have the right to request the service(interrupt

enable bit = 1).
l The device request must be more urgent than what the processor

is currently doing.

2024/1/3 11

2024/1/3 12

Interrupt Signal to CPU

n At the device side(I/O device set)
l Control register has “Interrupt Enable” bit
l Must be set for interrupt to be generated

n At the processor(CPU set)
l Sometimes have “Interrupt Mask” register (LC-3 does not)
l When set, processor ignores INT signal
l Why? - Example: may not want to be interrupted while in ISR

KBSR
1514 0

I/O device set: ready bit
13

CPU set: interrupt enable bit

interrupt signal
to processor(INT)

The Processor State Register(PSR)

2024/1/3 13

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Pr PL N Z P PSR

Cond CodesPriority Level

The Processor Status Register

n PSR[15]
l 0, privileged (supervisor) mode
l 1, unprivileged(user)mode

n The Priority Level of a program being executed
l PL[10:8]
l 0(最低)~7(最高)

Priv Mode

Generation of the Interrupt Signal to CPU

2024/1/3 14

PL1
Device

14 013

PL2
Device

14 013

PL7
Device

14 013

Priority
encoder INT

B

A ?
A>B

PL of executing program

…
...

n What if more than one device wants to interrupt?
l External logic controls which one gets to drive signals

2024/1/3 15

Testing for Interrupt Signal

n CPU looks at signal between STORE and FETCH
phases

n If not set, continues with next instruction
n If set, transfers control to interrupt service routine

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to
ISR

NO

YES

2024/1/3 16

How Does Processor Handle It?

n Examines INT signal just before starting FETCH phase
l If INT=1, don’t fetch next instruction
l Instead

-Save program state (PC, PSR (privilege and CCs)) on stack
-Update PSR (set privilege bit)
- Index INTV into IVT to get start address of ISR (put in PC)

n After service routine
l RTI instruction restores PSR and PC from stack
l Need a different return instruction, because

-RET gets PC from R7 and doesn’t update PSR

n Processor only checks between STORE and FETCH
phases -- Why?

2024/1/3 17

Supervisor Mode and the Stack

n Problem
l PC and PSR shouldn’t be saved on user stack
l What if R6 is uninitialized?
l What if user has set R6 to refer to OS memory?
l User could see OS data (when trap returns)

n Solution
l Create two versions of R6 (stack pointer) in register file

-One is user stack pointer (what we’ve been using all along)
-The other is supervisor stack pointer

l Extra register file logic selects the appropriate register based on
privilege bit in current PSR

l Bottom line: OS code always uses its own stack

2024/1/3 18

An Example (1)

2024/1/3 19

An Example (2)

2024/1/3 20

An Example (3)

2024/1/3 21

An Example (4)

2024/1/3 22

An Example (5)

2024/1/3 23

An Example (6)

