EeoMsLLxS HHERARHEA

St obNcicheaand Toetblogs cTCh Introduction to Computing Systems
(CS1002A.03)

- L
.h
R

Chapter9-3

Interrupt-Driven1/O =~

PRI 1=

cjuns@ustc.edu.cn
2023 Fall

a5 H KER

School of Computer Science and Technology

Outline ORLEAE LS

sity of Sci echnology of Chin

n Review

H Interrupt-Driven I/0O

B Input/Output

What is Interrupt-Driven I/0?

Program A 1s executing instruction n

Program A is executing instruction n+l
Program A is executing instruction n+2
Program A is executing instruction n+3
Program A 1s executing instruction n+4

2024/1/3

What is Interrupt-Driven I/0?

Program A 1s executing instruction n
Program A is executing instruction n+l
Program A is executing instruction n+2
Interrupt!!!

Program A is executing instruction n+3

Program A 1s executing instruction n+4

2024/1/3

What is Interrupt-Driven I/0?

Program A 1s executing instruction n

Program A is executing instruction n+l

Program A is executing instruction n+2

Interrupt signal is detected

Program A is put into suspended animation

PC is loaded with the starting address of Program B
Program B starts satisfying I/O device’s needs
Program B continues satisfying I/O device’s needs
Program B continues satisfying I/O device’s needs
Program B finishes satisfying I/O device’s needs

(VORI \C T \C I O \C R N

Program A is brought back to life

Program A is executing instruction n+3

Program A 1s executing instruction n+4

2024/1/3

When and Why to Use Interrupts

B When timing of external event is uncertain
® Example: incoming packet from network
® TRAP vs. Interrupt, 12.5s vs. 0.00001s @ 100 char read from KB

B When device operation takes a long time

® Example: start a disk transfer,
disk interrupts when transfer is finished

® processor can do something else in the meantime

B When event is rare but critical
® Example: building on fire -- save and shut down!

2024/1/3 6

How to implement an interrupt

B To implement an interrupt mechanism, we need:

® A way for the I/O device to signal the CPU that an interesting
event has occurred.

® A way for the CPU to test whether the interrupt signal is set.

B Generating Signal
® Software sets "interrupt enable(lE)" bit in device register.
® When ready bit is set and IE bit is set, interrupt is signaled.

interruPt enable bit 151413 0
ready bit KBSR

} interrupt signal

to processor

2024/1/3

Interrupt-Driven 1/0

B Testing for Interrupt Signal
® CPU looks at signal between STORE and FETCH phases
® If not set, continues with next instruction
® If set, transfers control to Interrupt Service Routine(ISR)

» F

D
Transfer to interrupt EA

ISR signal? |
OP
EX

More details in Chapter 10. S

2024/1/3

Interrupt-Driven 1/0

B Timing of 1/0 controlled by device

® 1. Report: Tells processor when something interesting happens
— Example: when character is entered on keyboard
— Example: when monitor is ready for next character
— Example: when block has been transferred from disk to memory

® 2. Processing: Processor interrupts its normal instruction
processing and executes a Interrupt Service Routine(ISR) (like a
TRAP)

— 1. Figure out what device is causing the interrupt
— 2. Execute routine to deal with event
— 3. Resume execution

B No need for processor to poll device
® Can perform other useful work

Interrupt is an unscripted subroutine call,
triggered by an external event

2024/1/3 9

How is Interrupt Signaled?

B External interrupt signal by Devices: INT
® Device sets INT=1 when it wants to cause an interrupt

B Interrupt vector: INTV

® 8-bit signal for device to identify itself

® Also used as entry into Interrupt Vector Table, which gives
starting address of Interrupt Service Routine (ISR)

—Just like Trap Vector Table and Trap Service
Routine

—TVT: x0000 to xO0OFF
—IVT: x0100 to x01FF

2024/1/3 10

Interrupt Signal to CPU

B Several things must be true for an I/0 device to
actually interrupt the processor (ALL the three
elements are present)

® The I/O device must want service(ready bit = 1)

® The device must have the right to request the service(interrupt
enable bit = 1).

® The device request must be more urgent than what the processor
is currently doing.

2024/1/3 11

Interrupt Signal to CPU

B At the device side(l/0 device set)

® Control register has “Interrupt Enable” bit
® Must be set for interrupt to be generated

B At the processor(CPU sel)
® Sometimes have “Interrupt Mask” register (LC-3 does not)
® When set, processor ignores INT signal
® Why? - Example: may not want to be interrupted while in ISR

CPU set: interrupt enable bit

151413 0

I/O device set: ready bit KBSR

interrupt signal
to processor(INT)

2024/1/3 12

The Processor State Register(PSR)

The Processor Status Register

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Pr PL N|z|P| PSR
Priv Mode Priority Level Cond Codes
B PSR[15]

® 0, privileged (supervisor) mode
® 1, unprivileged(user)mode
B The Priority Level of a program being executed
® PL[10:8]
® O(R(K)~7(=R)

2024/1/3 13

Generation of the Interrupt Signal to CPU

B What if more than one device wants to interrupt?
® External logic controls which one gets to drive signals

1413

1413

U B

1413

 INT <« Device A
CPU Controller j¢—» Device B
INTV <+ DeviceC
PL1
Device
PL of executing program
PL2 l
Device B
Priority
encoder ——» A —> INT
A>B
PL7
Device

v

2024/1/3

14

Testing for Interrupt Signal

B CPU looks at signal between STORE and FETCH
phases

B If not set, continues with next instruction
m If set, transfers control to interrupt service routine

» F

Transfer to
ISR

interrupt
signal?

2024/1/3

15

How Does Processor Handle It?

B Examines INT signal just before starting FETCH phase

® [f INT=1, don’t fetch next instruction
® Instead
— Save program state (PC, PSR (privilege and CCs)) on stack
— Update PSR (set privilege bit)
— Index INTV into IVT to get start address of ISR (put in PC)
B After service routine
® RTI instruction restores PSR and PC from stack

® Need a different return instruction, because
— RET gets PC from R7 and doesn’ t update PSR

B Processor only checks between STORE and FETCH
phases -- Why?

2024/1/3 16

Supervisor Mode and the Stack

B Problem

® PC and PSR shouldn’t be saved on user stack
® What if R6 is uninitialized?

® What if user has set R6 to refer to OS memory?
® User could see OS data (when trap returns)

m Solution

® Create two versions of R6 (stack pointer) in register file
— One is user stack pointer (what we’ ve been using all along)
— The other is supervisor stack pointer

® Extra register file logic selects the appropriate register based on
privilege bit in current PSR

® Bottom line: OS code always uses its own stack

2024/1/3 17

An Example (1)

Frogram A
Supervisor Stack User Stack
- [/ R6—»| /[////]]
[T ool 2D i
[T Ny
[111]] HHi
[T Ny
PC| x3007
PSR| x0001

Executing ADD at location x3006 when Device B interrupts
(INTV = x1d)

2024/1/3

An Example (2)

Program A ISR for
Supervisor Stack . —D:vice B
X
111111 jﬂ"
x3007 3006 ADD —
R6—+»| x0001
(11111 oo BT .
(1117
x0100
PC| x6200
PSR|_x8001 x012d| x6200

Push PC and PSR onto stack, set privilege bit, find
Device B (INTV=x2d) service routine address in IVT, and transfer control

2024/1/3 19

An Example (3)

Program A ISR for
Supervisor Stack . —[:vice B
X
[T
6202 AND
x3007 w3006 ADD el
R6—+»| x0001
[T oo BT
[T
PC| x6203
PSR| x8002

Executing AND at x6202 when Device C interrupts

2024/1/3

An Example (4)

RE6—»

PC
PSR

Supervisor Stack

T

x3007

x0001

x6203

x8002

x6300

x8002

¥3006

Program A

ADD

ISR for
Device B

XG —=>

6202 AND

x6210] BT 1L

%6300

%6315

ISR for
Device C

~

ETI

Push PC and PSR onto stack, set privilege bit, then transfer to

Device C service routine (at x6300)

2024/1/3

21

An Example (5)
| Still privileged
Program A ISR for .'II
Supervisor Stack . -[;‘"’iﬂe B |
X |
[T |
6202 | AND --..IL
x3007 x3006| ADD — .' <R
Ré—»| x0001 1\ Devi;r{;
K029 x6210] B11 6300~
x8002
PC| x6203
x8002 «6315{ RTI

PSR

Execute RTI at x6315; pop PSR and PC from stack

2024/1/3

An Example (6)

RE—»

PC
PSR

Supervisor Stack

HETTT

x3007

x0001

x6203

x8002

x3007

xouox

x3006

M

Program A ISR for
Device B
X6 >
G202 AND —_—
ADD

e

RTI

Mot privileged

Execute RTI at x6210; pop PSR and PC from stack:
continue Program A as if nothing happened!

2024/1/3

6300

X631

ISE for
Device C

>

RETI

23

