
Lab 1: Unfold the Secret

Brief

The magic of LC-3 grows.

Welcome to the LABS of ICS! As this is the first lab of the entire series, you might be wondering,
"How do I complete theses labs?", or even, "What do these labs do?". Don't worry, there are no
dumb questions —— the documents will tell you everything you need.

To not scare you out, I'll put it in the beginning: This lab, lab 1, is really an easy cake. And you
know, Lab 1 is probably the easiest one of the entire series. At everywhere else, there will be
assembly, bugs, and failures. You really won't want to get trapped by any, so get geared up, and
take a look at this very first lab.

Intro

Even the most complex project in the world was born from a simple idea. Suppose you're
exchanging some message with your pal, while fearing that others might be able to access your
super secret code, you've decided to encrypt it. The encryption works very well, but you also
need to design a decryption program for your friend. There is no time to get your laptop or PC.
The only tool that you have access to is the LC-3 machine. Therefore, you've arrived at the LC-3
laboratory, where we are now.

Tasks

Create a program to decrypt the secret number:

The secret number will be placed in the register R0 .

To decode the number, you need a secret key. Create your secret key as follows:

1. Use your student ID, remove the letters. ( PB12345678  becomes 12345678 )

2. Convert even digits to 0  and odd ones to 1 . ( 12345678  becomes 10101010 )

3. This is the binary form of your secret key. Convert it to decimal or hexadecimal.
( 10101010  becomes #170  or xaa )

4. Remember it or write it down as we'll use it later.



Performing a bitwise XOR operation on the number and your secret:

Output = Secret ^ R0

Put your output into register R3 .

Examples

Suppose your student ID is PB12345678 , and the input is (in R0 ):

x00c2

The decrypted number will be (in R3 ):

x0068

Because:

x0068 = x00c2 ^ xaa

Requirements

The program should be created using machine code and coded in text form. (Not
assembly!)

Instead of typing AND R0, R0, x0 , use 0101000000100000 .

Make sure to add line breaks for each instruction.

It's sufficient to complete the program using Notepad, TextEdit or Vim, but you can
pick any editor you like.

The final code of your program should look like below (content may differ):

1010110000010000 
0011111101011100 
0111101011111101 
(And more...)



The code is loaded at x3000 .

That means the first instruction of your program will be placed at x3000 , the second at
x3001 , and so on.

This is done automatically when loading the program. No manual operations needed.

This should not affect your code now, but it's important to know this for future labs.

After you've completed your program, make sure to add two extra lines:

0011000000000000  at the beginning.

This is a convention. It tells everyone that this program begins at x3000 .

1111000000100101  at the end.

This means HALT  which stops the machine. Similar to return 0;  in C.

Or your code won't run correctly.

Please follow academic ethics and morals. Do not pirate code that does not belong to you.

How To

Set the Secret

Suppose your secret is 10101010  ( xaa  in hexadecimal), you may find it really tempting to write:

AND R2, R2, x0 
ADD R2, R2, xaa

Well, this will not work, as xaa  is too large to fit into imm5  (used by ADD ).

There are several ways to deal with it, but most of them require memory accessing. I know you'll
yell out "Oh, no memory please!". And, yes, there do exists a solution using only the ADD
instruction.

First put 4 bits into the register, shift them left by 4 bits, then add the register by the last 4
bits.



AND R2, R2, x0 
ADD R2, R2, xa 
ADD R2, R2, R2 
ADD R2, R2, R2 
ADD R2, R2, R2 
ADD R2, R2, R2 
ADD R2, R2, xa

ADD  something by it self doubles it. After adding R2  by itself for 4 times, we have 10100000  in
R2 . Then we add xa  into R2  to make it become 10101010 . Done!

In future labs you'll learn how to use LD  to load values into registers.

Test and Run

There are numbers of tools which runs LC-3 assembly, but few of them runs LC-3 machine code.
However, I believe 99% of you have created your program in assembly before translating them
to binaries. By testing the assembly code, we can verify that our algorithm works. The only thing
left after which is to translate the instructions correctly.

For LC-3 assembly, it's highly recommended to use LC3Tools for testing. LC3Tools embeds
features like code editing, syntax highlighting, debugging and memory inspecting. It's cross-
platform, portable and also super powerful! If you're still new to LC3Tools, just make sure to
consult your TAs to know how to use it! Here's also a link to get the latest release:
https://github.com/chiragsakhuja/lc3tools/releases/latest

Tips and Tricks

As mentioned above, try to use assembly first to make life easier. Just make sure to
translate it to machine code correctly.

AND  something with 0  clears it.

Although not enforced, it's possible to complete the program with no more than 20 lines. If
you're finding your program being super long, consider using a better approach.

It's also possible to complete the program using only AND , ADD  and NOT  instructions, but
if you're finding other instructions being handy, feel free to use them.

Lab Report

https://github.com/chiragsakhuja/lc3tools/releases/latest


Completed your program? Congratulations I must say, but that's only half way to success. To get
a full mark (hopefully!), you'll need to compose a report summarizing your work.

Make sure to explain your code in your report. This is essential to show your thoughts and
to not get misjudged when your code happens to be similar to others.

Contents that are recommended to include:

Name and date

The core algorithm

Critical code to implement the algorithm

Debug process (if any)

Run results

Traps and pitfalls you've found (if any)

Suggestions (if any)

It's recommended to use Markdown to compose your report. Markdown fits very well for
our labs, while also being super easy to use! If you haven't picked it up already, make sure
to check out these helpful links:

Learn markdown: https://learnxinyminutes.com/docs/markdown or
https://www.runoob.com/markdown/md-tutorial.html

MarkText, a markdown editor app: https://www.marktext.cc

StackEdit, an online markdown editor: https://stackedit.io/app

Please export your report as a PDF file. Here's how to:

(Recommended) Markdown: Use MarkText to print Markdown files as PDF files.

Word Documents: Both Microsoft Word and LibreOffice Writer can export these
documents as PDF files.

LaTeX: Use a LaTeX compiler (e.g. XeLaTeX) to create a PDF document.

Notability: Share your document as PDF, then save it to local files for uploading.

(Not recommended) Handwriting: Office Lens can help you to scan your work.

The above content should also be helpful for future labs.

https://learnxinyminutes.com/docs/markdown
https://www.runoob.com/markdown/md-tutorial.html
https://www.marktext.cc/
https://stackedit.io/app


Submission

Note: This section varies according to your TAs. Make sure to consult them before
submitting!

Grab your report (say report.pdf ) and your code ( lab1.txt ):

1. Rename the files. Your TAs may have different requirements but generally:

StudentID_Name.pdf  for the report. (e.g. PB12345678_JohnDoe.pdf )

lab1.txt  for the code.

2. Create an archive (usually ZIP) and put both files in.

3. Name the archive according to your TAs. (Usually StudentID_Name.zip )

4. Upload the archive to the desired location. (Usually BlackBoard)


